Efficient logistic regression designs under an imperfect population identifier
نویسندگان
چکیده
منابع مشابه
Efficient regression calibration for logistic regression in main study/internal validation study designs with an imperfect reference instrument.
An extension to the version of the regression calibration estimator proposed by Rosner et al. for logistic and other generalized linear regression models is given for main study/internal validation study designs. This estimator combines the information about the parameter of interest contained in the internal validation study with Rosner et al.'s regression calibration estimate, using a general...
متن کاملEfficient L1 Regularized Logistic Regression
L1 regularized logistic regression is now a workhorse of machine learning: it is widely used for many classification problems, particularly ones with many features. L1 regularized logistic regression requires solving a convex optimization problem. However, standard algorithms for solving convex optimization problems do not scale well enough to handle the large datasets encountered in many pract...
متن کاملLogistic regression of family data from retrospective study designs.
We wish to study the effects of genetic and environmental factors on disease risk, using data from families ascertained because they contain multiple cases of the disease. To do so, we must account for the way participants were ascertained, and for within-family correlations in both disease occurrences and covariates. We model the joint probability distribution of the covariates of ascertained ...
متن کاملHorvitz-Thompson estimator of population mean under inverse sampling designs
Inverse sampling design is generally considered to be appropriate technique when the population is divided into two subpopulations, one of which contains only few units. In this paper, we derive the Horvitz-Thompson estimator for the population mean under inverse sampling designs, where subpopulation sizes are known. We then introduce an alternative unbiased estimator, corresponding to post-st...
متن کاملcumulative logistic regression vs ordinary logistic regression
The common practice of collapsing inherently continuous or ordinal variables into two categories causes information loss that may potentially weaken power to detect effects of explanatory variables and result in Type II errors in statistical inference. The purpose of this investigation was to illustrate, using a substantive example, the potential increase in power gained from an ordinal instead...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrics
سال: 2013
ISSN: 0006-341X
DOI: 10.1111/biom.12106